
3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 1/21

Object Detection
In this assignment, you will develop an object detector based on gradient features and sliding window classification. A set of test images and hogvis.py are
provided in the Canvas assignment directory

Name:Adrineh Khodaverdian

SID:35302770

In [1]:

1. Image Gradients [20 pts]
Write a function that takes a grayscale image as input and returns two arrays the same size as the image, the first of which contains the magnitude of the
image gradient at each pixel and the second containing the orientation.

Your function should filter the image with the simple x- and y-derivative filters described in class. Once you have the derivatives you can compute the
orientation and magnitude of the gradient vector at each pixel. You should use scipy.ndimage.correlate with the 'nearest' option in order to nicely handle the
image boundaries.

Include a visualization of the output of your gradient calculate for a small test image. For displaying the orientation result, please uses a cyclic colormap such
as "hsv" or "twilight". (see https://matplotlib.org/tutorials/colors/colormaps.html (https://matplotlib.org/tutorials/colors/colormaps.html))

NOTE: To be consistent with the provided code that follows, the gradient orientation values you return should range in (-pi/2,+pi/2) where a horizontal edge
(vertical gradient) is -pi/2 and the angle increases as the edge rotates clockwise in the image.

import numpy as np
import matplotlib.pyplot as plt

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 2/21

In [2]: #we will only use: scipy.ndimage.correlate
from scipy import ndimage

def mygradient(image):
 """
 This function takes a grayscale image and returns two arrays of the
 same size, one containing the magnitude of the gradient, the second
 containing the orientation of the gradient.

 Parameters

 image : 2D float array of shape HxW
 An array containing pixel brightness values

 Returns

 mag : 2D float array of shape HxW
 gradient magnitudes

 ori : 2Dfloat array of shape HxW
 gradient orientations in radians
 """
 # Gaussian blur to reduce noise
 blur_w = np.array([[1/16, 2/16, 1/16],[2/16, 4/16, 2/16],[1/16, 2/16, 1/16]])
 image = ndimage.correlate(image, blur_w)

 wx = np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]])
 wy = np.array([[-1, -1, -1], [0, 0 , 0], [1, 1, 1]])

 dx = ndimage.correlate(image, wx, mode='nearest')
 dy = ndimage.correlate(image, wy, mode='nearest')

 # Compute gradient magnitude and orientation
 mag = np.sqrt(dx**2 + dy**2)

 dx = np.where(dx==0, 1, dx)
 ori = np.arctan(dy/dx)

 return (mag, ori)

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 3/21

In [3]:

Out[3]: <matplotlib.image.AxesImage at 0x7f8def4689a0>

#
Demonstrate your mygradient function here by loading in a grayscale
image, calling mygradient, and visualizing the resulting magnitude
and orientation images. For visualizing orientation image, I suggest
using the hsv or twilight colormap.
#

here is one simple test image which has gradients pointed in all
directions so you can see if your orientation estimates are reasonable
[yy,xx] = np.mgrid[-100:100,-100:100]
testimage = np.minimum(np.maximum(np.array(xx*xx+yy*yy,dtype=float),400),8100)

fig = plt.figure(figsize=(10,8))
rows =1
columns = 3
(mag,ori) = mygradient(testimage)

Adds a subplot at the 1st position
fig.add_subplot(rows, columns, 1)
plt.title("original image")
plt.imshow(testimage, cmap=plt.cm.gray)

Adds a subplot at the 1st position
fig.add_subplot(rows, columns, 2)
plt.title("Magnitude")
plt.imshow(mag, cmap=plt.cm.gray)

Adds a subplot at the 1st position
fig.add_subplot(rows, columns, 3)
plt.title("Orientation")
plt.imshow(ori, cmap='hsv') # clip to [-pi, pi]

you should also load in or synthesize another image to test with besides
the one above.
image = plt.imread("table.png")
image = np.mean(image,axis=2)

fig = plt.figure(figsize=(10, 10))
rows =1
columns = 3
(mag,ori) = mygradient(image)

Adds a subplot at the 1st position
fig.add_subplot(rows, columns, 1)
plt.title("original image")
plt.imshow(image, cmap=plt.cm.gray)

Adds a subplot at the 1st position
fig.add_subplot(rows, columns, 2)
plt.title("Magnitude")
plt.imshow(mag, cmap=plt.cm.gray)

Adds a subplot at the 1st position
fig.add_subplot(rows, columns, 3)
plt.title("Orientation")
plt.imshow(ori, cmap ='hsv')

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 4/21

2. Histograms of Gradient Orientations [25 pts]
Write a function that computes gradient orientation histograms over each 8x8 block of pixels in an image. Your function should bin the orientation into 9 equal
sized bins between -pi/2 and pi/2. The input of your function will be an image of size HxW. The output should be a three-dimensional array ohist whose size is
(H/8)x(W/8)x9 where ohist[i,j,k] contains the count of how many edges of orientation k fell in block (i,j). If the input image dimensions are not a multiple of 8,
you should use np.pad with the mode=edge option to pad the width and height up to the nearest integer multiple of 8.

To determine if a pixel is an edge, we need to choose some threshold. I suggest using a threshold that is 10% of the maximum gradient magnitude in the
image. Since each 8x8 block will contain a different number of edges, you should normalize the resulting histogram for each block to sum to 1 (i.e.,
np.sum(ohist,axis=2) should be 1 at every location).

I would suggest your function loops over the orientation bins. For each orientation bin you'll need to identify those pixels in the image whose gradient
magnitude is above the threshold and whose orientation falls in the given bin. You can do this easily in numpy using logical operations in order to generate an
array the same size as the image that contains Trues at the locations of every edge pixel that falls in the given orientation bin and is above threshold. To collect
up pixels in each 8x8 spatial block you can use the function ski.util.view_as_windows(...,(8,8),step=8) and np.count_nonzeros to count the number of
edges in each block.

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 5/21

Test your code by creating a simple test image (e.g. a white disk on a black background), computing the descriptor and using the provided function hogvis to
visualize it.

Note: in the discussion above I have assumed 8x8 block size and 9 orientations. In your code you should use the parameters bsize and norient in place of
these constants.

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 6/21

In [4]: #we will only use: ski.util.view_as_windows for computing hog descriptor
import skimage as ski
def hog(image,bsize=8,norient=9):
 """
 This function takes a grayscale image and returns a 3D array
 containing the histogram of gradient orientations descriptor (HOG)
 We follow the convention that the histogram covers gradients starting
 with the first bin at -pi/2 and the last bin ending at pi/2.

 Parameters

 image : 2D float array of shape HxW
 An array containing pixel brightness values

 bsize : int
 The size of the spatial bins in pixels, defaults to 8

 norient : int
 The number of orientation histogram bins, defaults to 9

 Returns

 ohist : 3D float array of shape (H/bsize,W/bsize,norient)
 edge orientation histogram
 """
 # determine the size of the HOG descriptor
 (h,w) = image.shape
 h2 = int(np.ceil(h/float(bsize)))
 w2 = int(np.ceil(w/float(bsize)))
 ohist = np.zeros((h2,w2,norient))

 # pad the input image on right and bottom as needed so that it
 # is a multiple of bsize
 wremain = (w2 * bsize - w) % bsize
 hremain = (h2 * bsize - h) % bsize
 pw = ((wremain) // 2, (wremain + 1) // 2) # amounts to pad on left and right side
 ph = ((hremain) // 2, (hremain + 1) // 2) # amounts to pad on bottom and top side
 image = np.pad(image, (ph, pw), 'constant', constant_values=0)

 # make sure we did the padding correctly
 assert(image.shape==(h2*bsize,w2*bsize))

 # compute image gradients
 (mag,ori) = mygradient(image)

 # choose a threshold which is 10% of the maximum gradient magnitude in the image
 thresh = np.max(mag)*0.1

 # separate out pixels into orientation channels, dividing the range of orientations
 # [-pi/2,pi/2] into norient equal sized bins and count how many fall in each block
 binEdges = np.linspace(-np.pi/2, np.pi/2, norient+1);

 # as a sanity check, make sure every pixel gets assigned to at most 1 bin.
 bincount = np.zeros((h2*bsize,w2*bsize))
 for i in range(norient):
 #create a binary image containing 1s for pixels at the ith
 #orientation where the magnitude is above the threshold.
 B = np.where(np.logical_and(np.logical_and(ori >= binEdges[i], ori < binEdges[i+1]), mag > thresh), 1, 0)

 #sanity check: record which pixels have been selected at this orientation
 bincount = bincount + B

 #pull out non-overlapping bsize x bsize blocks
 chblock = ski.util.view_as_windows(B,(bsize,bsize),step=bsize)

 #sum up the count for each block and store the results
 ohist[:,:,i] += np.count_nonzero(chblock, axis=(2,3))

 #each pixel should have only selected at most once
 assert(np.all(bincount<=1))

 # lastly, normalize the histogram so that the sum along the orientation dimension is 1
 # note: don't divide by 0! If there are no edges in a block (i.e. the sum of counts
 # is 0) then your code should leave all the values as zero.
 sum_ori = np.sum(ohist, axis=2, keepdims=True)
 sum_ori = np.where(sum_ori==0, 1, sum_ori)
 ohist = ohist/sum_ori

 assert(ohist.shape==(h2,w2,norient))

 return ohist

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 7/21

In [5]: #provided function for visualizing hog descriptors
from hogvis import hogvis
generate a simple test image... a 80x80 image
with a circle of radius 30 in the center
[yy,xx] = np.mgrid[-40:41,-40:41]
im = np.array((xx*xx+yy*yy<=30*30),dtype=float)

hogim = hogvis(hog(im))
plt.subplot(1,2,1)
plt.imshow(im)
plt.subplot(1,2,2)
plt.imshow(hogim)
plt.show()
two other synthetic test images to experiment with
[yy,xx] = np.mgrid[-40:41,-40:41]
im1 = np.array((xx*xx+yy*yy<=30*30),dtype=float)
im1[np.abs(xx+yy)<=3] = 0

hogim1 = hogvis(hog(im1))

plt.subplot(1,2,1)
plt.imshow(im1)
plt.subplot(1,2,2)
plt.imshow(hogim1)
plt.show()

[yy,xx] = np.mgrid[-100:101,-100:101]
im2 = np.array(np.sin((xx*xx+yy*yy)/800),dtype=float)

hogim2 = hogvis(hog(im2))

plt.subplot(1,2,1)
plt.imshow(im2)
plt.subplot(1,2,2)
plt.imshow(hogim2)
plt.show()

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 8/21

3. Detection [25 pts]
Write a function that takes a template and an image and returns the top detections found in the image. Your function should follow the definition given below.

In your function you should first compute the histogram-of-gradient-orientation feature map for the image, then correlate the template with the feature map.
Since the feature map and template are both three dimensional, you will want to filter each orientation separately and then sum up the results to get the final
response. If the image of size HxW then this final response map will be of size (H/8)x(W/8).

When constructing the list of top detections, your code should implement non-maxima suppression so that it doesn't return overlapping detections. You can
do this by sorting the responses in descending order of their score. Every time you add a detection to the list to return, check to make sure that the location of
this detection is not too close to any of the detections already in the output list. You can estimate the overlap by computing the distance between a pair of
detections and checking that the distance is greater than say 70% of the width of the template.

Your code should return the locations of the detections in terms of the original image pixel coordinates (so if your detector had a high response at block [i,j] in
the response map, then you should return (8i,8j) as the pixel coordinates).

I have provided a function for visualizing the resulting detections which you can use to test your detect function. Please include some visualization of a simple
test case.

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 9/21

In [6]: from scipy import ndimage #we will only use: scipy.ndimage.correlate
def detect(image,template,ndetect=5,bsize=8,norient=9):
 """This function takes a grayscale image and a HOG template and
 returns a list of detections where each detection consists
 of a tuple containing the coordinates and score (x,y,score)

 Parameters

 image : 2D float array of shape HxW
 An array containing pixel brightness values

 template : a 3D float array
 The HOG template we wish to match to the image

 ndetect : int
 Maximum number of detections to return

 bsize : int
 The size of the spatial bins in pixels, defaults to 8

 norient : int
 The number of orientation histogram bins, defaults to 9

 Returns

 detections : a list of tuples of length ndetect
 Each detection is a tuple (x,y,score)
 """
 # norient for the template should match the norient parameter passed in
 assert(template.shape[2]==norient)

 fmap = hog(image,bsize=bsize,norient=norient)

 #cross-correlate the template with the feature map to get the total response
 resp = np.zeros((fmap.shape[0],fmap.shape[1]))

 for i in range(norient):
 resp = resp + ndimage.correlate(fmap[:,:,i], template[:,:,i])

 #sort the values in resp in descending order.val[i] should be ith largest score in resp
 # ind[i] should be the index at which it occurred so that val[i]==resp[ind[i]]
 val = np.sort(resp, axis=None)[::-1] #sorted response values
 ind = np.argsort(resp, axis=None)[::-1] #corresponding indices

 #work down the list of responses from high to low, to generate a list of ndetect top scoring matches which do not o
 detcount = 0
 i = 0
 detections = []
 while ((detcount < ndetect) and (i < len(val))):
 # convert 1d index into 2d index
 yb, xb = np.unravel_index(ind[i], resp.shape)

 assert(val[i]==resp[yb,xb]) #make sure we did indexing correctly

 #covert block index to pixel coordinates based on bsize
 xp = xb*bsize
 yp = yb*bsize

 #check if this detection overlaps any detections that we've already added
 #to the list. compare the x,y coordinates of this detection to the x,y
 #coordinates of the detections already in the list and see if any overlap
 #by checking if the distance between them is less than 70% of the template
 # width/height
 overlap = False

 for det in detections:
 dist = np.sqrt((xp- det[0])**2 + (yp - det[1])**2)
 if dist < (0.7*template.shape[0]*bsize):
 overlap = True
 break

 #if the detection doesn't overlap then add it to the list
 if overlap==False:
 detcount = detcount + 1
 detections.append((xp,yp,val[i]))
 i=i+1
 if (len(detections) < ndetect):
 print('WARNING: unable to find ',ndetect,' non-overlapping detections')

 return detections

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 10/21

In [7]: import matplotlib.patches as patches

def plot_detections(image,detections,tsize_pix):
 """
 This is a utility function for visualization that takes an image and
 a list of detections and plots the detections overlayed on the image
 as boxes.

 Color of the bounding box is based on the order of the detection in
 the list, fading from green to red.

 Parameters

 image : 2D float array of shape HxW
 An array containing pixel brightness values

 detections : a list of tuples of length ndetect
 Detections are tuples (x,y,score)

 tsize_pix : (int,int)
 The height and width of the box in pixels

 Returns

 None

 """
 ndetections = len(detections)

 plt.imshow(image,cmap=plt.cm.gray)
 ax = plt.gca()
 w = tsize_pix[1]
 h = tsize_pix[0]
 red = np.array([1,0,0])
 green = np.array([0,1,0])
 ct = 0
 for (x,y,score) in detections:
 xc = x-(w//2)
 yc = y-(h//2)
 col = (ct/ndetections)*red + (1-(ct/ndetections))*green
 rect = patches.Rectangle((xc,yc),w,h,linewidth=3,edgecolor=col,facecolor='none')
 ax.add_patch(rect)
 ct = ct + 1

 plt.show()

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 11/21

In [8]:

4. Learning Templates [15 pts]
The final step is to implement a function to learn a template from positive and negative examples. Your code should take a collection of cropped positive and
negative examples of the object you are interested in detecting, extract the features for each, and generate a template by taking the average positive template
minus the average negative template.

#
sketch of some simple test code, modify as needed
#

#create a synthetic image with some overlapping circles
[yy,xx] = np.mgrid[-40:40,-80:80]
im1 = np.array((xx*xx+yy*yy<=30*30),dtype=float)
[yy,xx] = np.mgrid[-40:40,-40:120]
im2 = np.array((xx*xx+yy*yy<=25*25),dtype=float)
[yy,xx] = np.mgrid[-40:40,-120:40]
im3 = np.array((xx*xx+yy*yy<=25*25),dtype=float)
im = (1/3)*(im1+im2+im3)

#compute feature map with default parameters
fmap = hog(im)

#extract a 3x3 template
template = fmap[2:5,2:5,:]

#run the detect code
detections = detect(im,template,ndetect=5)

#visualize results.
plot_detections(im,detections,(3*8,3*8))

visually confirm that:
1. top detection should be the same as the location where we selected the template
2. multiple detections do not overlap too much

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 12/21

In [9]: def learn_template(posfiles,negfiles,tsize=np.array([16,16]),bsize=8,norient=9):
 """This function takes a list of positive images that contain cropped
 examples of an object + negative files containing cropped background
 and a template size. It produces a HOG template and generates visualization
 of the examples and template

 Parameters

 posfiles : list of str
 Image files containing cropped positive examples
 negfiles : list of str
 Image files containing cropped negative examples
 tsize : (int,int)
 The height and width of the template in blocks
 Returns

 template : float array of size tsize x norient
 The learned HOG template"""
 #compute the template size in pixels corresponding to the specified template size (given in blocks)
 tsize_pix=bsize*tsize

 #figure to show positive training examples
 fig1 = plt.figure()
 pltct = 1

 #accumulate average positive and negative templates
 pos_t = np.zeros((tsize[0],tsize[1],norient),dtype=float)
 for file in posfiles:
 #load in a cropped positive example
 img1 = plt.imread(file)
 #convert to grayscale and resize to fixed dimension tsize_pix using skimage.transform.resize if needed.
 img_scaled1 = np.mean(img1, axis=2)
 img_scaled1 = ski.transform.resize(img_scaled1,tsize_pix)

 #if you want to train with a large # of examples, you may want to modify this, e.g. to show only the first 5.
 ax = fig1.add_subplot(len(posfiles),1,pltct)
 ax.imshow(img_scaled1,cmap=plt.cm.gray)
 pltct = pltct + 1

 #extract feature
 fmap = hog(img_scaled1)

 #compute running average
 pos_t += fmap

 pos_t = (1/len(posfiles))*pos_t
 plt.show()

 # repeat same process for negative examples
 fig2 = plt.figure()
 pltct = 1
 neg_t = np.zeros((tsize[0],tsize[1],norient),dtype=float)
 for file in negfiles:
 img2 = plt.imread(file)
 img_scaled2 = np.mean(img2, axis=2)
 img_scaled2= ski.transform.resize(img_scaled2,tsize_pix)

 ax = fig2.add_subplot(len(negfiles),1,pltct)
 ax.imshow(img_scaled2,cmap=plt.cm.gray)
 pltct = pltct + 1

 fmap2 = hog(img_scaled2)
 neg_t += fmap2

 neg_t = (1/len(negfiles))*neg_t
 plt.show()

 # visualize the positive and negative parts of the template using hogvis. visualize pos_t and neg_t
 plt.title("positive image")
 hogim_p = hogvis(pos_t)
 plt.imshow(hogim_p)
 plt.show()

 plt.title("positive image")
 hogim_n = hogvis(neg_t)
 plt.imshow(hogim_n)
 plt.show()

 # now construct our template as the average positive minus average negative
 template = pos_t - neg_t
 return template

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 13/21

In []:

5. Experiments [15 pts]
Test your detection by training a template and running it on a test image.

In your experiments and writeup below you should include: (a) a visualization of the positive and negative patches you use to train the template and
corresponding hog feature, (b) the detection results on the test image. You should show (a) and (b) for two different object categories, the provided face test
images and another category of your choosing (e.g. feel free to experiment with detecting cat faces, hands, cups, chairs or some other type of object).
Additionaly, please include results of testing your detector where there are at least 3 objects to detect (this could be either 3 test images which each have one
or more objects, or a single image with many (more than 3) objects). Your test image(s) should be distinct from your training examples. Finally, write a brief (1
paragraph) discussion of where the detector works well and when it fails. Describe some ways you might be able to make it better.

NOTE 1: You will need to create the cropped test examples to pass to your learn_template. You can do this by cropping out the examples by hand (e.g. using
an image editing tool). You should attempt to crop them out in the most consistent way possible, making sure that each example is centered with the same
size and aspect ratio. Negative examples can be image patches that don't contain the object of interest. You should crop out negative examples with roughly
the same resolution as the positive examples.

NOTE 2: For the best result, you will want to test on images where the object is the same size as your template. I recommend using the default bsize and
norient parameters for all your experiments. You will likely want to modify the template size as needed

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 14/21

Experiment 1: Face detection

In [11]:
assume template is 16x16 blocks, you may want to adjust this
for objects of different size or aspect ratio.
compute image a template size

bsize=8
tsize=np.array([16,16]) #height and width in blocks
tsize_pix = bsize*tsize #height and width in pixels
posfiles = ('pos1.png','pos2.png','pos3.png','pos4.png','pos5.png', 'pos6.png', 'pos7.png', 'pos8.png')
negfiles = ('neg1.png','neg2.png','neg3.png','neg4.png','neg5.png','neg6.png', 'neg7.png', 'neg8.png', 'neg9.png')

call learn_template to learn and visualize the template and training data
template = learn_template(posfiles,negfiles,tsize=tsize)

call detect on one or more test images, visualizing the result with the plot_detections function
img = plt.imread('faces1.jpg')
img = np.mean(img, axis=2)
detections = detect(img, template, ndetect=4)
plot_detections(img,detections,tsize_pix)

call detect on one or more test images, visualizing the result with the plot_detections function
img = plt.imread('face1.png')
img = np.mean(img, axis=2)
detections = detect(img, template, ndetect=5)
plot_detections(img,detections,tsize_pix)

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 15/21

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 16/21

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 17/21

Experiment 2: ??? detection

In [12]:

Cats

assume template is 16x16 blocks, you may want to adjust this
for objects of different size or aspect ratio.
compute image a template size
print("Cats")
bsize=8
tsize=np.array([16,16]) #height and width in blocks
tsize_pix = bsize*tsize #height and width in pixels
posfiles = ('p1.png','p2.png','p3.png','p4.png','p5.png', 'p6.png', 'p7.png', 'p8.png', 'p9.png', 'p10.png','p11.png')
negfiles = ('n1.png','n2.png','n3.png','n4.png','n5.png','n6.png', 'n7.png','n8.png','n9.png','n10.png')

call learn_template to learn and visualize the template and training data
template = learn_template(posfiles,negfiles,tsize=tsize)

call detect on one or more test images, visualizing the result with the plot_detections function
img = plt.imread('cats.png')
img = np.mean(img, axis=2)
detections = detect(img, template, ndetect=6)
plot_detections(img,detections,tsize_pix)

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 18/21

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 19/21

In [1099]:

Hands

assume template is 16x16 blocks, you may want to adjust this
for objects of different size or aspect ratio.
compute image a template size
print("Hands")
bsize=8
tsize=np.array([16,16]) #height and width in blocks
tsize_pix = bsize*tsize #height and width in pixels
posfiles = ('po1.png','po2.png','po3.png','po4.png','po5.png', 'po6.png', 'po7.png', 'po8.png',
 'po9.png', 'po10.png', 'pp1.png', 'pp2.png')
negfiles = ('ne1.png','ne2.png','ne3.png','ne4.png','ne5.png','ne6.png', 'ne7.png','ne8.png', 'ne9.png')

call learn_template to learn and visualize the template and training data
template = learn_template(posfiles,negfiles,tsize=tsize)

call detect on one or more test images, visualizing the result with the plot_detections function
img = plt.imread('handsup.png')
img = np.mean(img, axis=2)
detections = detect(img, template, ndetect=2)
plot_detections(img,detections,tsize_pix)

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 20/21

Write up: This method is a good base for our object detection, however, it requires an exahustive number of positive and negative samples to perform well.
Also depending on the position and size of items with respect to the image, these method might fail to detect some objects. For instance, it was easier to
detect human faces and cat faces, however, it was difficult to detect hands, becuae the hands have smaller components like fingers and different form of hand
gestrues and fingures increases the search data base. One of the ways to improve is the use of neural networks, and dynamic programming.Therefore, this
method can be extended and optimized into a better use.

3/3/23, 10:40 AM 4_detection - Jupyter Notebook

localhost:8890/notebooks/Downloads/4_detection.ipynb 21/21

In []:

